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Simulation-Based P Values: Response to North et al.

To the Editor:
North et al. (2002) discussed the estimation of a P value
on the basis of computer (i.e., Monte Carlo) simulations.
They emphasized that such a P value is an estimate of
the true P value. This is essentially their only point with
which we agree. The letter from North et al. is more
likely to confuse than enlighten.

Consider an observed test statistic, x, that under the
null hypothesis follows some distribution, f. Let X be a
random variable following the distribution f. We seek
to estimate the P value, . Let bep p Pr (X � x) y , … ,y1 n

independent draws from f, obtained by computer sim-
ulation. Let } (i.e., the number of simu-r p #{i:y � xi

lated statistics greater than or equal to the observed sta-
tistic). Let and .ˆ ˜p p r/n p p (r � 1)/(n � 1)

North et al. (2002) stated that is “not strictly cor-p̂
rect” and that is “the most accurate estimate of the Pp̃
value.” They further called “the true P value.”p̃

We strongly disagree with this characterization. First,
minor differences in P-value estimates on the order of
Monte Carlo error should not be treated differently in
practice, and so it is immaterial whether one uses orp̂
. Second, is a perfectly reasonable estimate of p. In-˜ ˆp p

deed, in many ways is superior to . Given the observedˆ ˜p p
test statistic, x, r follows a binomial (n,p) distribution,
and so is unbiased, whereas is biased. (The bias ofˆ ˜p p

is .) Further, has smaller mean square˜ ˆp (1 � p)/(n � 1) p
error (MSE) than , provided thatp̃ p ! n/(1 � 3n) ≈

. (The MSE of is , whereas that of isˆ ˜1/3 p p(1 � p)/n p
.)2(1 � p)(np � 1 � p)/(n � 1)

These results are contrary to those of North et al.
(2002) because they evaluate the performance of underp̃
the joint distribution of both the observed and Monte
Carlo data, whereas we prefer to condition on the ob-
served value of the test statistic. Evaluating P-value es-
timates conditionally on the observed data is widely ac-
cepted when the estimation is performed via analytic
approximations.

Regarding the question of how many simulation rep-
licates to perform, we recommend consideration of the
precision of the estimate, , using the properties of thep̂

binomial distribution, rather than adherence to a rule
such as . Standard statistical packages, such as Rr � 10
(Ihaka and Gentleman 1996), allow one to calculate a
CI for the true P value and to perform a statistical test,
such as whether the true P value is !.01.
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On Estimating P Values by Monte Carlo Methods

To the Editor:
North et al. (2002) propose a new formula for the em-
pirical estimation of P values by Monte Carlo methods
to replace a standard conventional estimator. They claim
that their new formula is “correct” and “most accurate”
and that the conventional formula is “not strictly cor-
rect,” repeating this claim many times in their letter. The
claim, however, is incorrect, and the conventional for-
mula is the correct one.

The North et al. claim arises when a test statistic
(called here “t”) takes a certain numerical value (called
here “t*”) when calculated from data from some ex-
periment, and it is required to find an unbiased estimate
of the P value corresponding to t* by Monte Carlo sim-
ulation. This is done by performing n Monte Carlo sim-
ulations, all performed under the null hypothesis tested
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in the original experiment and with the same sample size
and other characteristics as for the original experiment.
Suppose, to be concrete, that sufficiently large positive
values of the test statistic t are significant. Then, we
define “r” as the number of simulations in which the
simulation value of t is greater than or equal to the
observed value t*. North et al. claim that an unbiased,
and thus preferred, estimate of the P value arising from
these simulations is instead of the con-(r � 1)/(n � 1)
ventional estimate . This claim is incorrect.r/n

Strangely, North et al. (2002) themselves show by al-
gebra that the mean value of their estimator (r �

is , where “P” is the P value1)/(n � 1) (nP � 1)/(n � 1)
to be estimated. Since this is not equal to P, their P value
estimator is biased. Further, their calculation also shows
that the mean value of the conventional estimator ,r/n
whose use they do not recommend, is the desired value
P. Thus, the conventional estimator is unbiased. Thus,
there is an internal inconsistency in their argument, and
their algebraic calculations contradict their claim and
the argument leading to it. The algebraic calculations
are correct. It is important to see why the argument given
in North et al. (2002) is incorrect, since the reasoning
involved relates to the theory and practice of Monte
Carlo simulation procedures that are performed increas-
ingly in genetics, in particular to questions surrounding
P values and type 1 errors.

The incorrect argument given by North et al. (2002)
is that if the original data were generated under the null
hypothesis tested, then, in all, “experiments” weren � 1
conducted, of which one is real and n simulation. With
r as defined above, in of these, the value of ther � 1
statistic t is either equal to the observed value t* or is
greater than this value. It is then claimed that the esti-
mator is an unbiased estimator of the null(r � 1)/(n � 1)
hypothesis probability that the test statistic t exceeds t*
when the null hypothesis is true.

The error in this argument is, perhaps, best demon-
strated by considering parallel reasoning used in the ge-
netic ascertainment sampling context, exemplified as fol-
lows. Suppose that we wish to estimate the proportion
of girls in a population, using a sample of families from
that population. However, the sampling procedure is
such that only families in which the oldest child is a girl
are included in the sample. Clearly, using all children in
the sample to estimate the proportion of girls in the
population is incorrect, and the sample proportion of
girls will overestimate the population proportion. The
oldest child in each family, automatically included in the
category of interest (girls), must be excluded in the es-
timation process. The analogy with the Monte Carlo
case is that the observed value of the test statistic found
from the actual data must be excluded in estimating a
P value, since it is similarly automatically included in
the category of interest (greater than or equal to itself).

Any mathematical calculation concerning P values that
does take this into account will be incorrect.

It now appears that North et al. (2002) used mistaken
terminology, and that the claim that they wished to make
does not concern P value estimation, but that use of

“provides the correct type 1 error rate.”(r � 1)/(n � 1)
More precisely, if the type 1 error is chosen to be a, then
it is claimed that rejecting the null hypothesis when

leads to the desired type 1 error of(r � 1)/(n � 1) ! a

5%.
To see this in formal statistical terms, the null hy-

pothesis is rejected, with the notation and assumptions
given above, if the value of r is “too low.” More spe-
cifically, with the chosen type 1 error of a, the null hy-
pothesis is rejected if , where K is chosen so thatr ! K

.Prob(r ! K, given null hypothesis is true) p a

The one “experimental” and n simulation values of
t, leading to a total of values, can be listed inn � 1
ascending order. The event that is identical to ther ! K
event that the experimental value of t lies among the
highest of these values. The null hypothesisK � 1 n � 1
probability of this is . Equating the(K � 1)/(n � 1)
probability with a, we get(K � 1)/(n � 1) K p (n �

. The event is, thus, the1)a � 1 K p (n � 1)a � 1 r ! K
same as the event , and this is the cri-(r � 1)/(n � 1) ! a

terion that North et al. give.
This procedure does not, however, imply, as claimed

by North et al. (2002), that is an unbiased(r � 1)/(n � 1)
estimate of the P value. It is best to keep the questions
of unbiased estimation of the P value and the nature of
the testing procedure that leads to a desired type 1 error
separate. Pursuing this point, it is not clear in what sense
North et al. relate, as they do, a P value estimate to a
type 1 error. They claim, for example, that when r p
, so that the standard procedure P value estimate0 r/n

is also 0, it is implied, under the standard procedure,
that the type 1 error is also 0. This claim is incorrect.
A type 1 error in statistics is set in advance, typically
5% or 1%, and the value so chosen for it is not in any
way determined by or estimated from the observed value
of any statistic.
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A Note on the Calculation of Empirical P Values from
Monte Carlo Procedures

To the Editor:
We welcome the opportunity to correct our mistaken
terminology in referring to as an unbiased(r � 1)/(n � 1)
estimate of P, where a Monte Carlo procedure has been
carried out with n simulations, of which r exceed the
observed statistic obtained from the real data set. As we
ourselves pointed out (North et al. 2002), this estimate
is indeed slightly biased. What we intended to write was
that using this estimate is valid in the sense that it pro-
duces the correct type 1 error rate. According to Cox
and Hinkley (1974), the observed P value of a study,
denoted as Pobs, is defined as ), the prob-Pr (T � t ; Hobs 0

ability that the test statistic T is greater than or equal
to its actual value tobs from the observed data, if the null
hypothesis, H0, is true. Their interpretation of the P
value is that it is “the probability that we would mis-
takenly declare there to be evidence against H0, were we
to regard the data under analysis as just decisive against
H0.” Since if and only if , it followsP � P T � tobs obs

that . In otherPr (T � t ; H ) p Pr (P � P ; H ) p Pobs 0 obs 0 obs

words, we should obtain a P value of .05 (or lower) with
frequency 0.05, and a P value of .01 (or lower) with
frequency 0.01, and so on, if the null hypothesis is true.
If a test procedure produces P values of .05 (or lower)
with greater frequency than 0.05, when the null hy-
pothesis is true, then the procedure is anticonservative.

Our article (North et al. 2002) was motivated by the
recognition that the common practice of using as ther/n
P value from a Monte Carlo procedure is, in fact, anti-
conservative, whereas the use of provides(r � 1)/(n � 1)
the correct type 1 error rate. There is nothing novel
about the use of —it is published in a(r � 1)/(n � 1)
standard textbook on Monte Carlo methods (Davison
and Hinkley 1997), and we merely sought to give it
greater prominence and to investigate its implications.
We accept that it is mildly counterintuitive, and so some
people may find the reasons for its usage difficult to
grasp. Nevertheless, we remain convinced that it is far
preferable to use an estimate that is slightly biased but
yields the correct type 1 error rate than one that is un-
biased but is demonstrably anticonservative.

One way to understand the justification for using
rather than is as follows. When the(r � 1)/(n � 1) r/n

null hypothesis is true, the actual value of the test statistic
and the n replicate values based on simulations consti-
tute independent realizations of the same randomn � 1
variable. All possible ranks of the actual test statistic
among these values, from rank 1 to rankn � 1 n � 1
in descending order of magnitude, are, therefore, equally
probable. The probability of the actual test statistic being
exceeded in exactly r of n simulated replicates (i.e., of
being ranked ) is, therefore, . Likewise, ther � 1 1/(n � 1)
probability of the actual test statistic being exceeded in
r or fewer of n simulated replicates (i.e., of being ranked

or higher) is ).r � 1 (r � 1)/(n � 1
For those who are not convinced by the above argu-

ment, we present a more mathematical derivation. The
probability that the actual test statistic is exceeded in
exactly r simulations, conditional on any particular
value of P, is given by the binomial distribution with
parameters n and P. The unconditional probability that
the actual test statistic is exceeded in exactly r simula-
tions is obtained by integrating the product of this con-
ditional probability and the density function of P,f(P)
over the possible range of P. Therefore,

1

n! r n�r( )Pr (r; H ) p p 1 � p f(p)dp0 � ( )n � r !r!
0

1

n! r n�r( )p p 1 � p dp�( )n � r !r!
0

( )n � r !r!n!
p

( ) ( )n � r !r! n � 1 !

1
p

n � 1

for . The second step in the derivation de-r p 0,1, … ,n
pends on the density function of P being uniform in [0,1]
under the null hypothesis, whereas the third step is due
to the recognition that the integral is a beta function
with parameters and 1. From the fact thatn � r � 1 r �
the probability of achieving any particular value of r is

), it follows that the probability of the actual1/(n � 1
test statistic being exceeded in r or fewer of n simulated
replicates (i.e., of being ranked or higher) isr � 1 (r �

.1)/(n � 1)
For anyone who continues to remain skeptical in spite

of these theoretical arguments, it is trivial to carry out
simulation procedures that demonstrate that using r/n
is anticonservative, whereas using does(r � 1)/(n � 1)
indeed yield the correct type 1 error rate. Anybody who
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